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ABSTRACT 

We consider the family of curves in R4: 

Moq = {(cos 2 rrpt, sin 2 rrpt, cos 2 7rqt, sin 2 :rqt) : t E R}, 

where p and q are positive integers, and determine the facial structure of the 
convex hull of these curves. 

1. Introduct ion  

In this paper  we determine the facial structure of the convex hull of 

t r igonometr ic  curves of the form: 

Mpq = {(cos2zcpt, sin2rrpt, cos2rrqt, sin27rqt):O-< t < 1}C R 4, 

where p and q are positive integers. In a sequel to this paper  we shall consider 

the convex hull of v (v _-> 5) evenly spaced points on Mp,. 

Interest in these curves arises f rom the following considerat ions.  Firstly, these 

curves are a natural general izat ion of the "classical" 4-dimensional  ( t r igonomet-  

ric) momen t  curve 

M,2 = (cos 2 n-t, sin 2 ~-t, cos 4 n't, sin 4 ~-t). 

Secondly,  they exhibit a high degree of symmetry  (see §2 below). Lastly, the 

structure of their convex hull can be complete ly  determined,  which in itself is an 

interesting point. In fact, the method  by which we shall obtain the structure of 

Mpq can be thought  of as a general izat ion of the methods  that Gale used to 

determine the structure of the cyclic polytopes (cf. Gale  [1]). In the same way 

that Gale  studied propert ies  of polynomial  functions derived from the momen t  
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curve, we shall study trigonometric functions related to Mpq, to obtain our 
results. 

2. Basic properties  of Cpq 

DEFINITION. For positive integers p,q and for t E R, define: 

(i) zpq(t)= (cos27rpt, sin2wt, cos2~rqt, sin2~rqt ), 
(ii) Mpq={Zpq(t):O<=t< 1}, 

(iii) Cpq = convMp,. 

The following assertions are obvious: 

(a) z~(t) = zp~(t + 1). 

(b) llzp.(t)[ I = k/2. 
(c) If (p, q) = 1 (i.e., if p and q are relatively prime) then Mpq is a simple closed 

curve. 

Let d =(p ,q) .  It is immediate that Ceq = C,~d.q/~, and therefore we shall 

assume from now on that (p ,q )=  1. We shall also assume that 1 _-< p < q. Define 

the following orthogonal matrices: 

A(,0) = ( c o s 2 7 r 0  sin27r0 ) 
- s i n 2 ~ 0  cos2~'0 ' 

0 T~(a )=(  A(pa)O a (qa) ) '  

( ,  O 0  O )  

R =  0 - 1  0 0 . 

0 0 1 0 

0 0 0 - 1  

With these definitions, the following relations hold: 

z. .( t) .  Tp~(a) = z.~(t + a), 

zp,(t). R = zoq ( -  t). 

The matrices Tpq(a), 0 =  a < 1, together with R, generate a group Dp, of 

symmetries of Mpq, and thu,; of C,~. Every member of D., induces a combinator- 

ial automorphism of C~q. Moreover, Dpq acts transitively on Meq, and thus, in 

order to study the combinatorial structure of Cpq. i.e., its faces and facelets,* it 

*If K CR d is convex and S CK, then S is a facelet of K provided there is a flat L of R a such that 
S = L A K and K\L is convex; Grfinbaum [2] uses the term "poonem". 
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suffices to consider those faces and facelets which contain a given vertex, say 

zm(0)= (1,0,1,0). Every other face and facelet is obtained from these by the 

action of some member  of Deq, i.e., by some rotation or reflection. (Actually, the 

rotations are already transitive on Mpq.) 

3. Statement of the results 

3.1. For the rest of the paper we fix p and q and write C for Cpq, M for Mpq 

and z for Zpq. 

NOTATION. Given relatively prime integers p and q, 1 < p  < q, there is a 

unique pair of integers k and l, 0 =< k < p, 1 =< l < q, such that lp - kq = 1. We 

denote by Jpq the open interval ]k /p , l /q[  C]O,l[. We also define: 

REMARKS. Jpq and 1 - Jpq are the only open intervals in [0,1[ of length 1/pq, 

having endpoints of the form i/p, j/q. (The length of any interval with such 

endpoints is always a multiple of l/pq.) Note that cl Jpq and el(1 - Jm) are disjoint 

closed intervals (even when considered as intervals in R/Z), whenever p _-> 3. 

The following theorem is the main result of this paper: 

THEOREM l. (a) The proper faces of C are: 

(1) {z(t)}, t E [0,1[. These are O-faces (i.e., O-dimensional faces). 

(2) [ z ( s ) , z ( t ) l ,  0<= s < t < 1, t - s @ J*q. These are 1-faces. 

(3) conv{z(t + i /p),  i = O, 1 , . . . , p  - 1}, 0_-< t < 1/p. I f  p >-_ 3 these are 2-faces 

which are regular p-gons. I f  p = 2, these are 1-faces that were not listed in (2). I f  

p = 1, these are O-faces that were (obviously) listed in (1). 

(4) conv{z(t + i /q),  i = 0 , 1 , . . . , q -  1}, 0 =  < t <  1/q. Same comments as in (3), 

according to whether q ~ 3 or q = 2. 

(5) There are no 3-faces. 

(b) The facelets of C that are not faces are the edges of the p-gons listed in (a)(3) 

(when p >->_ 3) and of the q-gons listed in (a)(4) (when q >->_ 3). 

3.2. REMARKS. The most interesting (and difficult) part of Theorem 1 is 

statement (a)(2), which characterizes those pairs of points of M which span 

edges of C. We dispense with the rest of the faces of C - -  vertices and 

2-dimensional faces (which can degenerate into edges in some cases) - -  in the 

following remarks: 
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(1) The 0-faces of C ale those listed in (a)(1), since C = c o n v M  and 

M C_ bdB(0,X/2).  Thus every point of M is an exposed point of C. 

(2) For statement (a)(3), consider "special" support byperplanes H~ of C of 

the form H~ ={uCR~:(u ,v)=6} ,  where 3_->0 and v =(v l ,v2 ,0 ,0)  is a unit 

vector, Writing v as (cos2rcpto,sin27rpto,O,O), we obtain: (z( t) ,v)= 
cos27rp(t-to). Since Hv supports C, 3 must be 1, and therefore 

H~ 71 C = conv{z(t):cos27rp(t - tc~) = 1} = conv{z(t. + i/p), i = 0,1 . . . . .  p - 1}. 

Thus (a)(3) lists exactly all the faces of C supported by these "special" 

hyperplanes. A simple computation (see Remark (3) below) shows that these 

faces are 2-dimensional regalar polygons (if p => 3). 

For (a)(4), the same considerations hold. These faces are supported by 

hyperplanes Hv, where v = (0, 0, cos 27rqto, sin 2~'qt,). 

(3) As to part (b) of Theorem 1, note that every proper facelet of a convex set 

K is a facelet of a proper face of K (see Gr/inbaum [2], p. 27). Assuming part (a) 

of the theorem, the only candidates for facelets that are not faces are the edges 
of the polygons in (a)(3) and (a)(4). These are indeed facelets, being faces of 

faces. Consider such a polygon, say 

F = co,av{ z(0,, z ( 1  1 . . . . .  z ( ~ ) } .  

Two vertices z(i/p) and z(j/p) of F are adjacent (determine an edge) iff qi and 
q] are "adjacent" modulo p, i.e., if 

q . ( i - j ) - =  +_ l (modp)  

o r  

i - j - =  -+ k(modp) ,  

where lp - kq = 1 (see notation in 3.1). We conclude that the edges of F are of 

the form [z It), z (t + k/p)] and k/p E bd J*q. (0 < k < p, by definition and since 

p = > 3 > 1 . )  Similarly, the edges of the q-gons in (a)(4) are of the form 

[z(s),z(s + l/q)], I/q Ebd.r*pq. These facelets of C are limits in the Hausdorff 

metric of the edges listed in (a)(2). Assuming part (a), these facelets are not 

faces, since k/p and l/q are not in J*q. 

In view of these remarks, what remains to be proven of Theorem 1 can be 

summarized in: 

THEOREM 2. (a) [z(s),z(t)] is a face of C whenever 0 < s < t < l  and 
t - s  ~J* , .  
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(b) I f  F is a proper face of  C, dim F > 0, and if F lies in a supporting hyperplane 

Ho, where v = (v , ,  v2, v3, v4) and neither v~ = v2 = 0 nor v3 = v4 = 0 hold, then: 

F = [ z ( s ) , z ( t ) ] ,  for some O <= s < t < l,  such that t - s C J pq.* 

3.3. We illustrate Theorem 1 with a few examples. 

(i) The case p = 1, q = 2. M is now the classical trigonometric moment  curve, 

and we expect to find that any two distinct points on M determine a 1-face. 

Indeed, . _ 1 U J p q -  ]0,5[ ]~_,1[, so that [ z ( s ) , z ( t ) ]  is a 1-face whenever 0-_ < s < t < 1 

and t - s ~ ' .  Also, since p = 1 and q = 2 ,  there are no 2-faces, and the q-gons 

listed in part (a)(4) of Theorem 1 are the intervals [ z ( s ) , z ( s  + '_~)], 0 =  < s <~ as 

expected. 

(ii) p = l ,  q=>3. In this case J * ~ o = ] O , 1 / q [ U ] l - 1 / q , l [ .  The 1-faces are 

[ z ( s ) , z ( t ) ] ,  where 0=< s < t < 1, and t - s  E J*q. The 2-faces are q-gons, and 

[ z ( t ) , z ( t  + l /q)]  is a facelet that is not a face, for every t E [0,1[. 

(iii) p = 2, q > 3. Here  Jt*,q ]½- 1/2q,~[ U l l that case = = ]~,5+ 1/2q[. Note in this 

[ z ( t ) , z ( t  +½)] is a face, and not only a facelet. 

3.4. REMARK. One of the most interesting properties of the classical moment  

curve is its neighbourliness, i.e., the fact that every two distinct points on M~.~ 

determine an edge of C~2. Our results show that for a given point z * of Moq, the 

set of points {t E [0 ,1[ : [ z* , z ( t ) ]  is an edge of Cpu} is a union of two intervals 

with length 1]pq. In this sense one could say that Cp, is "2/pq neighbour ly ' .  Note 

also that the position of these intervals depends on number  theoretic properties 

of p and q. 

4. Reduction of the problem 

We begin now to tackle the problem of determining the edges of C, a problem 

which will occupy us for the rest of this paper. Suppose that F is a face of C. 

C = c o n v  M, and thus F = convA for some A C M. Note that 0 is the barycenter  

of M;  therefore, if H is a supporting hyperplane and F = C n H is a proper  face 

of C, then 0 Z /4 ,  and C C H - .  ( H  is the closed half space bounded by H that 

contains 0, while H + is the one that does not.) Thus we can restate the problem 

as follows: What are the subsets A of M, such that for some hyperplane 

H C R4\{0}, M N H + = M N H = A .  

DEFINITIONS. 

(1) Define r/:R2-->R 4 by: 

r/(0, q~) = (cos21r0,sin21r0,cos27rq~,sin27r~0). 
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( 2 ) £ = ~  ~(M) C_R 2. 

(3) For a hyperplane Ho = {u E R ~ : ( u , v ) =  1}, define: 

S(H~) = T/-~(H~ +) -- {(0, q~) E Rz:((cos27rO, sin27rO, cos21rqhsin2rrqQ, v) >--_ 1}. 

Let us consider some of the properties of r/, £ and S(H~). Note first that "1/ 

maps R 2 onto the torus T 2 = {(cosa, sina, cosfl, sinl3): (a, fl)ER~}. (Evidently 

M C_ T2CbdB(O,~/2).) Note also that for every x E T 2, -q-I(x) = r/-~(x)+ Z 2, 

where Z 2 = { ( n , m ) : n , m  E Z} is the standard unit lattice. Therefore, every 

~-preimage, and in particular E and S(H~), is doubly periodic, with periods (1,0) 

and (0,1). Accordingly, we shall often confine our attention to the fundamental 

square 

E = x 

The planar set £ is easily described. Define a line Lo = {(pt, qt), t E R}, and 

note that since Tl(pt, q t )=z( t ) ,  M = ~ ( L o )  and thus ~ = r /  ' ( M ) = L o + Z  2. 

Another important observation is that for any t,,, 

(4.1) ~ '(z (to)) = (pto, qto) + Z 2. 

A simple computation shows that ~ = Lo + Z. ( l /q ,0)= Lo + Z. (0,1/p), i.e., £ is 

the union of a sequence of lines having slope q/p. The horizontal distance 

between two adjacent lines :is 1/q, and the vertical distance is l/p. 
Consider the set S(Hv), defined in (3) above. Writing the vector v = 

(v,, v2, v3, v4) as 

(4.2) v = (a cos 2~'0o, a sin27r0o, b cos27r¢o, b sin27rqb), 

where a = "VFv~+-V~ >= 0 and b = ~/v~ + v4 => 0, we obtain 

(4.3) S(Ho)={(O, qQER":acos27r(O-Oo)+bcos27r(q~-q~o)>=l}. 

Thus, we can write S(Ho)= S(a, b, 0o, qb), for the suitable quadruple a, b, 0o, q~o. 

Note that if H~ is a support hyperplane of M, and S(H,)= S(a, b, 0o,q~o), then 

a + b => 1; for otherwise S(.F-/~) = O, i.e., Hv n T 2 = O .  Conversely, every real 

a, b, 0o, ¢,,, with a, b nonnegative, a + b => 1, determines a hyperplane H~, 

where v is defined as in (4.2), and H~ n T : / 0 .  Also, (4.3) implies that 

bd S(Ho) = bd S(a, b, 0o, q~o) 

= {(0, q~) E R z :a  cos2~r(0 - 0o) + b cos27r (q~ - q~o) = 1}. 

The following lemma further describes S(Ho). 
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LEMMA 3. Let a > 0 ,  b=>0, S=S(a,b ,O,O) .  Then S has the following 

properties: 

(a) S is symmetric with respect to reflection in each of the coordinate axes, and 

therefore centrally symmetric. 

(b) I f  int S ~ 0 (i.e., if a + b > 1), then E N S is strongly starshaped with respect 

to the origin, in the sense that u E E N S and 0 <= )t < 1 imply Au E int(E O S). 

Moreover, if u = ( O,q~) then the entire rectangle with vertices (+_ O, +-~p) lies in 

E N S .  

(c) Ira  > O, b > 0 and if int S ~  0 ,  then a line tangent to bd S at a point (0o, ~o) 

in int E has positive slope if 0~. ~po < O, negative slope if 0~. q~o > O, zero slope if 

Oo = 0 and infinite slope if ~,j = O. 

PROOF. (a) and (b) follow immediately from the definition of S. (c) follows by 

a simple computation of the derivative of the implicit function ~0(0) (or 0(~)) 

defined by a cos2rr0 + b cos27r~o = 1. • 

REMARK. In fact, S(H~) will be a convex planar set in the cases that we shall 

consider. However, we shall not prove this, but rather use weaker properties of 

S(Ho). It might be helpful to visualize S(Ho) as looking rather like an ellipse 

(although it is not), with its major axes parallel to the axes of the plane. 

We are now able to reformulate the 4-dimensional problem, stated in the 

beginning of this section, in two dimensions, translating the sets H +, H, M and A 

into r t ~(H+) = S(H) ,  ~7 l ( H ) = b d S ( H ) ,  '1 ' ( M ) = E  and 7/ ' ( A ) = B :  What 

are the subsets B of E, such that there exist real numbers a, b (a _-> 0, b _-> 0) and 

0o, q~o, and for which 

O S(a, b, 0,,, q~o) = ~ O bd S(a, b, 0,,, q~o) = B. 

Ann illustration of 5; (for the case p = 3 and q = 5) and S(H~) is given in Fig. 1. 

LEMMA 4. Suppose that O<=s < t <  1. Then t - s  ~J*q  if and only if 
rl-~(z(s)) = u + Z  2 and r t - l ( z ( t ) )= v + Z  2, where u and v are points that lie on 

adjacent lines of "Z and determine a line with a negative slope. 

PROOF. By (4.1), replacement of s and t by s + a and t + a will translate u 

and v by the constant vector (pa, q a ) E  Lo (see description of ~ above). This 

translation maps each line of E onto itself. Accordingly, it suffices to consider the 

case s =0 .  Also, we can clearly replace u and v by u + ( n , m )  and v + ( n , m ) ,  

where ( n , m ) E Z  2. Thus w.l.o.g, we take s = 0  and u=(0 ,0 ) .  
(,7-1(z (0)) = (0,0) + z2.) 
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(-~,~) (L~) 

' / / 

(-~, --~) (~, -~,) 

Fig. 1. E = E~,s, S = S(0.8,0.25,0.25,0.25); I is heavily marked. 

Define I = (Lo+ ( l /q ,0 ) ) f )  Q4, where  Q4 is the interior  of the 4th quadrant .  

Thus I = ](0, - l/p),(1/q,O)[ (see Fig. 1). Note  that  the set of points of E that  lie 

on a line adjacent  to L0 and together  with (0,0) de te rmine  a line of negative 

slope is precisely I U  - [ ;  thus we have to show that t EJ*q¢:> 

n - ' (Z  ( t ))  C ( [  U I I )  ÷ Z 2. 

Recall  that Jpq =]k/p,  llq[, where I p - k q  = 1 ,  and consider  the mapping 

t-->(pt, q t ) -  (k, l) (t E [0,1[). This mapping is one- to -one  be tween  Jpq and I:  it is 

an affine mapping,  and we have 

k .i..) 

and 

Thus,  t E J~ ~ ~/ l(z (t)) -- (pt, qt) + Z 2 = (pt, q t ) -  (k, l) + Z 2 C I + Z 2. 

Conversely,  if ~/ l(z (t)) C I + Z 2, then 

~l-l(z (t)) = (pt*, qt*) - (k, l) + Z 2 = (pt*, qt*) + Z 2 

for some t*EJ~q. But 77 ~(z(t))=(pt, q t ) + Z  z. Since p and q are relatively 

prime, it follows that  t-~ t * ( m o d l ) ,  and since both  t and t* belong to [0,1[, 

t = t * E J m .  
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Similarly, t E 1 - Jpq iff r l - l ( -  7 (t)) C ( -  I)  + Z 2. Thus the proof is complete. • 

We can finally state a "translated" version of Theorem 2. This version i~" the 

one we shall prove. 

DEFINITION. Let S = S(a, b, 0o, ~o), and D C_ E. We shall say that S supports 

at D if E n S = Z n bd S = D. (Obviously S supports E at D if and only if the 

corresponding hyperplane supports C at conv{7/(x)" x E D}.) 

THEOREM 5. 

(a) I f  u and v lie on adjacent lines of ~Z and determine a line of negative slope, 

then there are a, b, 0o, q~o, a > 0 ,  b > 0 ,  such that S(a,b, Oo,q)o) supports "~ at 

{u ,v}+Z 2 (i.e., u and v correspond to the endpoints of an edge of Cpq). 

(b) Suppose that a > 0 and b > O. If  S = S ( a, b, Oo, q~o) is such that S supports 

at D, and ]D/Z21 _-> 2, then D = {u, v} + Z 2, where u and v lie on adjacent lines of 

and determine a line of negative slope (i.e., every pair of endpoints of an edge of 

Cpq is obtained in this way). 

The preceding discussion shows that Theorem 5 implies Theorem 2. 

The following tedious lemma is, unfortunately, crucial to the proof of 

Theorem 5. It proves a unimodality property of a certain class of trigonometric 

polynomials. 

DEFINITION. Assume that c < d and that I C R is any interval with endpoints 

c and d. 

(1) A differentiable function q~ : I---> R is strictly unimodal on I if for some 

to @ [c, d], q~'(t) > 0 for all c < t < to and <g'(t) < 0 for all to < t < d. to is called the 

peak of q~. (Note that to may be an endpoint of L) 

(2) If g :R2--->R is differentiable and J -- I ( I )  is a line segment in the plane, 

where I :R--->R 2 is an affine function, then g is strictly unimodal on J if the 

function q~ = g o b  is strictly unimodal on /. 

LEMMA 6. Let E = [_~,~] × [ 1 ~ _ -_~,_~]C R 2, and let A be a line in R 2 that does 

not coincide with a coordinate axis. Assume that A intersects both coordinate axes 

in E, and at least one of them in intE. Define: f ( x , y )  = a cos2rrx + b cos2zry, 

where a _-> 0, b _-> 0, a + b > 0. Then f is strictly unimodal on A n E. 

PROOF. The lemma holds trivially if a = 0 or b = 0, or if (0,0) E A, since in 

these cases f is the sum of at most two strictly unimodal functions with the same 

peak. Assume therefore that a > 0, b > 0 and (0,0) ~ A. Using the symmetries 

of f and E we can reduce the problem to the following case: A cuts the x-axis at 
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(Xo,0) and the y-axis at (0, yo), where - 1  < Xo < 0, 0 < -Xo =< yo =< ½. Let (u,, uy) 
and (vx,vy) be the endpoints of A ME, and assume that the points (u~,ur), 
(xo,0), (0, yo), (v~, v~) appear in this order on A n E. ((vx, vy) may coincide with 

(0,yo); see Fig. 2.) Under our assumptions, the equation of A is y = ax +/3, 

where a _ > l ,  0 < / 3 < ½ ,  and /3/a=-Xo<½. We must show that ~p(x)= 

acos27rx +bcos27r(ax  +/3) is strictly unimodal on [ux,v~]. Define 

I=]-/3/a,O[ and note that q~'(x)>0 for x E ] u x , - ~ / a ] ,  and q~'(x)<0 for 

x E [0, vx [. (The last statement is trivial if vx > 0, and void if vx = 0.) Thus it 

suffices to show that ~ is unimodal on L 

We consider three cases: 
(i) a = 1. In this case q~(x)= a cos27rx + b cos27r(x +/3) can be written as 

a cos27r(x + 3~) and its period is equal to 1. Also v~ > 0, q~ increases to the left of 

/, decreases to the right of / ,  ] I r ] < ½, and thus ~ must be strictly unimodal on / .  

(ii) a > 1, q~'(0)= 0 (and therefore /3 = ½), and q~"(0)= 4~-(ba 2- a)<= O. We 

shall show that in this case q)'(x)> 0 for all x C / .  We have 

~'(x) = 2 r r ( -  a sin27rx + ba sin2crax), 

~o"(x) = 4~r2(- a cos27rx + bot2cos27rax). 

Note that - ½ < a x < x < 0 f o r - a l l x ~ L  

For -½-<_x-_< -¼, we have;: 

~'(x) > 27r(ba sin2~:x - a sin2~-x)=> 2~-(ba ~ - a)sin2~-x => 0. 

(-L~) (½,~ 

/ 
iXo o) 

/ (u,, uy) 

/A 
/(v~,vy) 
(o, yo) 

(--~, -½) 

Fig. 2. 

(~, -~) 
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For  i - ~ < x  < 0 ,  we shall show that q~"(x)<0;  thus q~'(x) is decreasing,  and 

~o'(x) > ~/(0) = 0. Indeed ,  in this interval cos27rx > 0. If cos 27tax _-< 0 then q~"(x) 

is clearly negative,  and otherwise,  

q~"(x) _-< 47r2( - a cos2zrx + a cos27rax)  < 0. 

(iii) a > 1, q~'(0) < 0 (or q~'(0) = 0 and q~"(0) > 0). Thus  ~ ' ( x )  < 0 for  all x E I 

sufficiently close to 0. Recall  that ~ o ' ( - / 3 / a ) >  O. Thus it suffices to show that  

q~'(x) = 0 for at most  one  x in L 

q~'(x) = - 27r(a sin27rx + ba sin27r(ax +/3)) ,  

sin2~rx < 0 and s in27r(ax + /3 )  > 0 for  all x G / ,  and there fore  q~'(x)= 0 if and 

only if 

s in21r(ax + /3 )  _ a 
g(x)  = sin2~'x ba " 

We shall show that g ' ( x ) ~  0 for  all x E I, and thus g(x)  cannot  attain the same 

value twice in I. 

g'(x)  = 0¢:> a cos27r(ax  +/3)sin2~rx - sin27r (ax +/3)cos27rx = 0, 

¢~ a c tg27r(ax  + / 3 ) -  ctg27rx = 0. 

Finally, we show that h(x )  = a ctg2~r(ax + / 3 ) -  ctg27rx is nonzero  for  all x E L 

Note  that a c tg2 r r ( ax  + /3 )  and ctg27rx are both  decreasing on L Assume,  on 

the contrary,  that  Xl E I and h(x l )= 0. Put  

r = a c tg27r(axl  + /3 )  = ctg27rxl, 

h '(x~) = (a  ctg 2~r(ax +/3) - ctg 2~x )~'=x ~ 

= 27r( - a2(1 + ctg227r(ax, + / 3 ) ) +  (1 + ctg2 (27rxl))) 

= 2 7 r ( -  a : -  r 2+ 1 + r 2 ) = 2 7 r ( 1 -  a : ) < 0 ,  

thus h ' (x l )  < 0 whenever  h(x,)  = 0, and therefore  h(xi) = 0 implies h(x)  < 0 for 

all xl < x < 0. But  a rout ine  check shows that  h(x)  is nonnegat ive  for  negative x, 

near  zero.  In fact, lim, t 0 h (x)  = oo if/3 ~ ½ ; if/3 = ½, lim~ t 0 h (x)  = 0 and h (x)  > 0 

for negative x sufficiently near  zero.  (This can be verified, e.g., by checking the 

Taylor  series expansion of cotangent  x.) Thus h(x)  > 0 for all x E L • 

COROLLARY 7. Let a, b, A be as in Lemma 6, and S = S(a,b,O,O) then: 

(a) l E n a  n b d S l ~ 2 .  

(b) f f { E N A N b d S } = { u , v }  then ]u,v[ C_intS and E n A f3 S = [u,v]. 
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(c) If  a > 0 and b > 0, and if the line A is tangent to the curve bd S at a point 
v E intE, then E n A N S = E N A  O b d S  ={v}. 

PROOF. See the definition of S, Formula 4.3, and use Lemma 6. (Recall that 

bdS is. the level set {(O,q~)ER2:f(O,q~) = 1} of the function f(0, ~) = a cos27r0 

+ b cos 27rq~ and that f is strictly unimodal on E N A.) • 

LEMMA 8. Let ~' be a translate of ~, and let A be a line of E' nearest to the 
origin. Then A cuts the y-axis in E and the x-axis in int E. (Thus Lemma 6 and 
Corollary 7 apply to A.) 

PROOF. Immediate, recalling that the horizontal distance between adjacent 

lines of Y is 1/q =< ½, and the vertical distance is 1/p < 1. • 

5. Proof of Theorem 5 

We prove part (b) first. Let a > 0, b > 0, 0o, q~o be given, let S = S(a, b, 0o, 0o), 

and assume that ~ n  S = ~ n b d S  D_{u,v}, where u,v E R  2 and u ~  v(modZ 2) 

(thus a + b > t). We shall find u', v' on adjacent lines of ~, that determine a line 

of negative slope, such that E A S = { u ' , v ' } + z  -~. 

Define ~ ' =  ~ -  (00, q~o), S ' =  S(a,b,O,O) (= S -  (0o,~oo)). We shall show that 

E n ~ ' n  S ' =  E NE 'NbdS ' :={ (~ , ( ) ,  -(~:,()}, where 0 <  ~ <½, - ½ <  ( < 0 ,  and 

the points (~,~') and -(~:,~') lie on adjacent lines of ~'. Putting u ' =  

(0,,, ~o) + (~, (), v' = (0o, ~o) - (~:, ~'), we see that all the requirements are fulfilled. 

By Lemma 3(b), S' n E is strongly starshaped with respect to the origin. But 

~' N intS '  = ~3, so that E n S' must be bounded by the two lines L~ and L2 of ~' 

adjacent to the origin. S' is centrally symmetric and we claim that so is ~'. 

Assume the contrary; then L~, say, is nearer (0,0) than L2. By Lemma 8, 

Corollary 7(b) applies to L~, and since E N L ~ N i n t S ' = Q ,  we have 

I E N L ,  NS'[<=I. By the central symmetry of S', [ E A S ' N L 2 ] = O ,  and so 

] E N S' n E'[ =< 1, a contradic.tion. 

Thus E' and S' are symmetric, and therefore (w.l.o.g.) Lj is the line y = 

(q/p)x - 1/2p and L, is the line y = (q/p)x + 1/2p. Assuming that E N S n L, = 

{(s c, ()}, so that E n S n L2 = {( -  ~, - ~)}, it remains to show that the points (~:, () 

and -(~,~') determine a line of negative slope. The symmetry of E n S' (with 

respect to the axes) implies that E N S' is bounded by the rhombus determined 

by the lines L,, L2 and their reflections y = - ( q / p ) x  + 1/2p, y = - ( q / p ) x  
-1/2p. The vertices of thi,; rhombus are (0,-+l/2p) and (-+l/2q,0). Since 

q > p _-> 1, it follows that (~:, ,r) E int E (unless ~ = 0 and ~" = +- ½, in which case 

(~, ~) = - (~, ~')(mod Z2), i.e. I(S N E)/Z2[ _-< 1, contrary to our assumption). L, 
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and L~_ are clearly tangent  to bd S at the points ((, ~) and ( - ~:, - ~), respectively. 

Thus the slope of bd S at the points _+ (~c if) is equal to the slope of £ ' ,  which is 

q/p > 0 .  By Lemma  7(c), -+ (~:, if) are in the interior of the 4th and 2rid quadrants ,  

and thus de termine  a line of negative slope. 

PROOF OF PART (a). We are given points u = (0~, ¢1), v = (02, ¢~_) on adjacent  

lines of ~, such that 0~ > 02 and qh < ~ ,  and we are looking for a > 0, b > 0, and 

00, q~0 such that 

Y, n S(a,b, 0o,~oo) = S~ n bdS(a,b,  0,,  q~o) = {(0~, qh), (02, q~,)} + Z e. 

Put 0,,=½(0~+02), ~,,=½(¢~+q~2), ( ~ , ( ) = ( 0 ~ , ~ , ) - ( 0 o , q ~ , )  and define ~ ' =  

- (0,,, q~,,). Note  that (0_~, ~ 2 ) -  (0,,, ~0o) = - (~, r) .  If we find positive a, b such 

that for  S'=S(a,b,O,O), E O S ' N ' Z ' = E N b d S ' N ' Z ' = { + ( ~ , ~ ) }  then 

S(a, b, 0~,, q~o) will satisfy our  requirements .  

We require that + (~:,~')E b d S '  so that a and b must satisfy: 

(5.1) a cos27r~ + b cos27r~" = 1. 

Also, because E O S'  is strongly starshaped (Lemma 3(b)) E N S'  should be 

conta ined in the closed strip be tween the two adjacent  lines of £' ,  L~ through 

(~:, r )  and L2 through - ( s  c, () .  Thus L, and L,~ must support  E n S'  and so be 

tangent  to b d S '  at (~c, ~-) and -(~:, () ,  respectively. This implies: 

(5.2) pa sin2rr~: + qb sin 27r~" = 0. 

The  solution to (5.1) and (5.2) is: 

1 1 
a = s . q  sin2~-~', b = - S . p s i n 2 ~ ' ~  c, 

where A = q sin 27r( cos 27r£ - p cos 27r( sin 27r£. 

The  point (~c, ~-) lies on the line L,: y = qx/p - l/2p and in the interior of the 

4th quadrant .  Thus (~:, ~r)@ in tE,  or more  precisely, 0 <  ~: < 1/2q =4<~ and --~2= < 

- 1/2p < ~" < 0. It follows that q sin 2rr~r < 0, and - p sin 27r£ < 0. To  show that a 

and b exist and are positive we must show that A < 0, or,  equivalently,  that 

(q/p)ctg2~r£ - ctg27r~" > 0. Indeed,  

qctg2~rs¢ - ctg27r~" > ctg2~,f  - ctg27r~" (since 0 < c < ,~). 
P 

Note  that since q > p _-> 1, 

=q~_2_~ >~ 1 
p 2"  
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I 0 Also, ctg27ry is decreasing on ] -~ ,  [. Therefore, 

ctg27r¢ - ctg27r¢ => ctg27r~ - ctg27r (~: - 1 )  = ctg2zr~ - ctg2rr~ = 0. 

Thus a and b are positive:, and the lines LI and L2 are tangent to bd S' at the 

points (¢,~') and - (~ ,~) ,  respectively, which lie in intE. By Corollary 7(c), 

E O S' n (LI U L2) = {--- (¢,~)}. Since E n S' is strongly starshaped (Lemma 

3(b)), it follows that E n S' lies entirely in the closed strip between L1 and L2, 

and thus 

E n b d S ' n X ' =  E n s ' n X ' =  E n s ' n ( L ,  U L2)={+(~,~)}, 

as required. Thus the proof is complete. 
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